Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Plant Direct ; 8(1): e562, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222933

RESUMO

Cadmium (Cd) is one of the environmental pollutants contaminated in our food. Several previous reports showed that rice polishing cannot be efficient to reduce Cd content in white rice, implying the characteristic Cd distribution in rice grain. However, Cd distribution has not been fully elucidated so far. Herein, 109Cd radiotracer experiment was performed using the rice seedlings at various time points after flowering to obtain autoradiographs of the brown rice to visually understand the Cd transport and distribution during the grain-filling process. It was shown that 109Cd accumulated in the outermost area of the brown rice, and also in the middle part of the starchy endosperm, resulting in the appearance of the double circle distribution pattern, which was not observed in the autoradiographs of 65Zn. The inner circle of 109Cd located around the center of the endosperm was developed particularly at around 8 and 10 days after flowering. After this period, 109Cd started to deposit at the outer part of the endosperm, which was also found in the autoradiograph of 14C-sucrose. Considering the physiology of grain development, the contribution of water transport and protein synthesis in the endosperm on the characteristic Cd distribution pattern was hypothesized.

2.
Commun Biol ; 6(1): 1113, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923823

RESUMO

The human leukocyte antigen (HLA) region on chromosome 6 is strongly associated with many immune-mediated and infection-related diseases. Due to its highly polymorphic nature and complex linkage disequilibrium patterns, traditional genetic association studies of single nucleotide polymorphisms do not perform well in this region. Instead, the field has adopted the assessment of the association of HLA alleles (i.e., entire HLA gene haplotypes) with disease. Often based on genotyping arrays, these association studies impute HLA alleles, decreasing accuracy and thus statistical power for rare alleles and in non-European ancestries. Here, we use whole-exome sequencing (WES) from 454,824 UK Biobank (UKB) participants to directly call HLA alleles using the HLA-HD algorithm. We show this method is more accurate than imputing HLA alleles and harness the improved statistical power to identify 360 associations for 11 auto-immune phenotypes (at least 129 likely novel), leading to better insights into the specific coding polymorphisms that underlie these diseases. We show that HLA alleles with synonymous variants, often overlooked in HLA studies, can significantly influence these phenotypes. Lastly, we show that HLA sequencing may improve polygenic risk scores accuracy across ancestries. These findings allow better characterization of the role of the HLA region in human disease.


Assuntos
Doenças Autoimunes , Bancos de Espécimes Biológicos , Humanos , Alelos , Sequenciamento do Exoma , Predisposição Genética para Doença , Doenças Autoimunes/genética , Antígenos HLA/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II , Polimorfismo de Nucleotídeo Único , Reino Unido
3.
Sci Rep ; 13(1): 18528, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898650

RESUMO

Type II rickets is a hereditary disease caused by a mutation in the vitamin D receptor (VDR) gene. The main symptoms of this disease are bone dysplasia and alopecia. Bone dysplasia can be ameliorated by high calcium intake; however, there is no suitable treatment for alopecia. In this study, we verified whether gene therapy using an adenoviral vector (AdV) had a therapeutic effect on alopecia in Vdr-KO rats. The VDR-expressing AdV was injected into six 7-week-old female Vdr-KO rats (VDR-AdV rats). On the other hand, control-AdV was injected into 7-week-old female rats (control-AdV rats); non-infected Vdr-KO rats (control rats) were also examined. The hair on the backs of the rats was shaved with hair clippers, and VDR-AdV or control-AdV was intradermally injected. Part of the back skin was collected from each rat after AdV administration. Hair follicles were observed using hematoxylin and eosin staining, and VDR expression was examined using immunostaining and western blotting. VDR-AdV rats showed significant VDR expression in the skin, enhanced hair growth, and low cyst formation, whereas control-AdV and non-infected rats did not show any of these effects. The effect of VDR-AdV lasted for nearly 60 days. These results indicate that gene therapy using VDR-AdV may be useful to treat alopecia associated with type II rickets, if multiple injections are possible after a sufficient period of time.


Assuntos
Doenças do Desenvolvimento Ósseo , Raquitismo , Feminino , Ratos , Animais , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Alopecia/genética , Alopecia/terapia , Alopecia/complicações , Terapia Genética , Adenoviridae/genética , Adenoviridae/metabolismo , Vitamina D/uso terapêutico
4.
Nat Commun ; 14(1): 6198, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794074

RESUMO

Alternative splicing generates functional diversity in isoforms, impacting immune response to infection. Here, we evaluate the causal role of alternative splicing in COVID-19 severity and susceptibility by applying two-sample Mendelian randomization to cis-splicing quantitative trait loci and the results from COVID-19 Host Genetics Initiative. We identify that alternative splicing in lung, rather than total expression of OAS1, ATP11A, DPP9 and NPNT, is associated with COVID-19 severity. MUC1 and PMF1 splicing is associated with COVID-19 susceptibility. Colocalization analyses support a shared genetic mechanism between COVID-19 severity with idiopathic pulmonary fibrosis at the ATP11A and DPP9 loci, and with chronic obstructive lung diseases at the NPNT locus. Last, we show that ATP11A, DPP9, NPNT, and MUC1 are highly expressed in lung alveolar epithelial cells, both in COVID-19 uninfected and infected samples. These findings clarify the importance of alternative splicing in lung for COVID-19 and respiratory diseases, providing isoform-based targets for drug discovery.


Assuntos
COVID-19 , Doença Pulmonar Obstrutiva Crônica , Transtornos Respiratórios , Humanos , Processamento Alternativo/genética , Predisposição Genética para Doença , COVID-19/genética , COVID-19/metabolismo , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Isoformas de Proteínas/genética , Transtornos Respiratórios/metabolismo , Estudo de Associação Genômica Ampla/métodos
5.
Hum Genet ; 142(10): 1461-1476, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37640912

RESUMO

Identifying causal genes at GWAS loci can help pinpoint targets for therapeutic interventions. Expression studies can disentangle such loci but signals from expression quantitative trait loci (eQTLs) often fail to colocalize-which means that the genetic control of measured expression is not shared with the genetic control of disease risk. This may be because gene expression is measured in the wrong cell type, physiological state, or organ. We tested whether Mendelian randomization (MR) could identify genes at loci influencing COVID-19 outcomes and whether the colocalization of genetic control of expression and COVID-19 outcomes was influenced by cell type, cell stimulation, and organ. We conducted MR of cis-eQTLs from single cell (scRNA-seq) and bulk RNA sequencing. We then tested variables that could influence colocalization, including cell type, cell stimulation, RNA sequencing modality, organ, symptoms of COVID-19, and SARS-CoV-2 status among individuals with symptoms of COVID-19. The outcomes used to test colocalization were COVID-19 severity and susceptibility as assessed in the Host Genetics Initiative release 7. Most transcripts identified using MR did not colocalize when tested across cell types, cell state and in different organs. Most that did colocalize likely represented false positives due to linkage disequilibrium. In general, colocalization was highly variable and at times inconsistent for the same transcript across cell type, cell stimulation and organ. While we identified factors that influenced colocalization for select transcripts, identifying 33 that mediate COVID-19 outcomes, our study suggests that colocalization of expression with COVID-19 outcomes is partially due to noisy signals even after following quality control and sensitivity testing. These findings illustrate the present difficulty of linking expression transcripts to disease outcomes and the need for skepticism when observing eQTL MR results, even accounting for cell types, stimulation state and different organs.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , Desequilíbrio de Ligação , Controle de Qualidade , Locos de Características Quantitativas
6.
J Clin Endocrinol Metab ; 108(12): 3320-3329, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37368847

RESUMO

CONTEXT: Effects of modest alcohol consumption remain controversial. Mendelian randomization (MR) can help to mitigate biases due to confounding and reverse causation in observational studies, and evaluate the potential causal role of alcohol consumption. OBJECTIVE: This work aimed to evaluate dose-dependent effect of alcohol consumption on obesity and type 2 diabetes. METHODS: Assessing 408 540 participants of European ancestry in the UK Biobank, we first tested the association between self-reported alcohol intake frequency and 10 anthropometric measurements, obesity, and type 2 diabetes. We then conducted MR analyses both in the overall population and in subpopulations stratified by alcohol intake frequency. RESULTS: Among individuals having more than 14 drinks per week, a 1-drink-per-week increase in genetically predicted alcohol intake frequency was associated with a 0.36-kg increase in fat mass (SD = 0.03 kg), a 1.08-fold increased odds of obesity (95% CI, 1.06-1.10), and a 1.10-fold increased odds of type 2 diabetes (95% CI, 1.06-1.13). These associations were stronger in women than in men. Furthermore, no evidence was found supporting the association between genetically increased alcohol intake frequency and improved health outcomes among individuals having 7 or fewer drinks per week, as MR estimates largely overlapped with the null. These results withstood multiple sensitivity analyses assessing the validity of MR assumptions. CONCLUSION: As opposed to observational associations, MR results suggest there may not be protective effects of modest alcohol consumption on obesity traits and type 2 diabetes. Heavy alcohol consumption could lead to increased measures of obesity as well as increased risk of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Masculino , Humanos , Feminino , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/genética , Análise da Randomização Mendeliana , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/epidemiologia , Obesidade/epidemiologia , Obesidade/genética , Causalidade , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
7.
J Nutr Sci Vitaminol (Tokyo) ; 69(2): 90-97, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37121728

RESUMO

Rat Cyp27b1 was successfully expressed in HepG2 cells using an adenovirus vector. High vitamin D 1α-hydroxylation activity was detected in them, whereas no activity was observed in non-infected cells. Similarly, vitamin D 1α-hydroxylation activity was also observed in HepG2 cells expressing Cyp27b1-Flag, which is tagged with a Flag at the C-terminus of Cyp27b1. Western blot analysis using an anti-Flag antibody showed a clear band of Cyp27b1-Flag. Next, we screened three types of anti-Cyp27b1 antibodies, which consist of two commercially available antibodies and our self-made antibody using Cyp27b1- or Cyp27b1-Flag expressing HepG2 cell lysate as a positive control. Surprisingly, Western blot analysis revealed that two commercially available antibodies did not detect Cyp27b1 but specifically detect other proteins. In contrast, our self-made antisera specifically detected Cyp27b1 and Cyp27b1-Flag in the HepG2 cells expressing Cyp27b1 or Cyp27b1-Flag. These commercially available antibodies have been used for the detection of Cyp27b1 by Western blotting and immunohistochemistry. Our results suggest that those data should be reanalyzed.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase , Vitamina D , Ratos , Animais , Humanos , Células Hep G2 , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Proliferação de Células , Vitamina D/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo
8.
Sci Rep ; 13(1): 6236, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069249

RESUMO

Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully understood. To approach this problem, we measured 4701 circulating human protein abundances in two independent cohorts totaling 986 individuals. We then trained prediction models including protein abundances and clinical risk factors to predict COVID-19 severity in 417 subjects and tested these models in a separate cohort of 569 individuals. For severe COVID-19, a baseline model including age and sex provided an area under the receiver operator curve (AUC) of 65% in the test cohort. Selecting 92 proteins from the 4701 unique protein abundances improved the AUC to 88% in the training cohort, which remained relatively stable in the testing cohort at 86%, suggesting good generalizability. Proteins selected from different COVID-19 severity were enriched for cytokine and cytokine receptors, but more than half of the enriched pathways were not immune-related. Taken together, these findings suggest that circulating proteins measured at early stages of disease progression are reasonably accurate predictors of COVID-19 severity. Further research is needed to understand how to incorporate protein measurement into clinical care.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , Proteínas , Fatores de Risco , Progressão da Doença , Estudos Retrospectivos
9.
Nat Metab ; 5(2): 248-264, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36805566

RESUMO

Obesity is a major risk factor for Coronavirus disease (COVID-19) severity; however, the mechanisms underlying this relationship are not fully understood. As obesity influences the plasma proteome, we sought to identify circulating proteins mediating the effects of obesity on COVID-19 severity in humans. Here, we screened 4,907 plasma proteins to identify proteins influenced by body mass index using Mendelian randomization. This yielded 1,216 proteins, whose effect on COVID-19 severity was assessed, again using Mendelian randomization. We found that an s.d. increase in nephronectin (NPNT) was associated with increased odds of critically ill COVID-19 (OR = 1.71, P = 1.63 × 10-10). The effect was driven by an NPNT splice isoform. Mediation analyses supported NPNT as a mediator. In single-cell RNA-sequencing, NPNT was expressed in alveolar cells and fibroblasts of the lung in individuals who died of COVID-19. Finally, decreasing body fat mass and increasing fat-free mass were found to lower NPNT levels. These findings provide actionable insights into how obesity influences COVID-19 severity.


Assuntos
COVID-19 , Obesidade , Proteoma , Humanos , COVID-19/genética , Análise da Randomização Mendeliana , Obesidade/complicações , Obesidade/genética
10.
Int J Epidemiol ; 52(4): 1163-1174, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-36773317

RESUMO

OBJECTIVES: Increased iron stores have been associated with elevated risks of different infectious diseases, suggesting that iron supplementation may increase the risk of infections. However, these associations may be biased by confounding or reverse causation. This is important, since up to 19% of the population takes iron supplementation. We used Mendelian randomization (MR) to bypass these biases and estimate the causal effect of iron on infections. METHODS: As instrumental variables, we used genetic variants associated with iron biomarkers in two genome-wide association studies (GWASs) of European ancestry participants. For outcomes, we used GWAS results from the UK Biobank, FinnGen, the COVID-19 Host Genetics Initiative or 23andMe, for seven infection phenotypes: 'any infections', combined, COVID-19 hospitalization, candidiasis, pneumonia, sepsis, skin and soft tissue infection (SSTI) and urinary tract infection (UTI). RESULTS: Most of our analyses showed increasing iron (measured by its biomarkers) was associated with only modest changes in the odds of infectious outcomes, with all 95% odds ratios confidence intervals within the 0.88 to 1.26 range. However, for the three predominantly bacterial infections (sepsis, SSTI, UTI), at least one analysis showed a nominally elevated risk with increased iron stores (P <0.05). CONCLUSION: Using MR, we did not observe an increase in risk of most infectious diseases with increases in iron stores. However for bacterial infections, higher iron stores may increase odds of infections. Hence, using genetic variation in iron pathways as a proxy for iron supplementation, iron supplements are likely safe on a population level, but we should continue the current practice of conservative iron supplementation during bacterial infections or in those at high risk of developing them.


Assuntos
COVID-19 , Doenças Transmissíveis , Sepse , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana/métodos , Ferro , Biomarcadores , Sepse/epidemiologia , Sepse/genética , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/genética , Polimorfismo de Nucleotídeo Único
11.
J Steroid Biochem Mol Biol ; 230: 106275, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36854350

RESUMO

Recently, we generated type II rickets model rats, including Vdr(R270L), Vdr(H301Q), Vdr(R270L/H301Q), and Vdr-knockout (KO), by genome editing. All generated animals showed symptoms of rickets, including growth retardation and abnormal bone formation. Among these, only Vdr-KO rats exhibited abnormal skin formation and alopecia. To elucidate the relationship between VDR function and rickets symptoms, each VDR was expressed in human HaCaT-VDR-KO cells using an adenovirus vector. We also constructed an adenovirus vector expressing VDR(V342M) corresponding to human VDR(V346M) which causes alopecia. We compared the nuclear translocation of VDRs after adding 1α,25-dihydroxyvitamin D3 (1,25D3) or 25-hydroxyvitamin D3 (25D3) at final concentrations of 10 and 100 nM, respectively. Both 25D3 and 1,25D3 induced the nuclear translocation of wild type VDR and VDR(V342M). Conversely, VDR(R270L) translocation was observed in the presence of 100 nM 25D3, with almost no translocation following treatment with 10 nM 1,25D3. VDR(R270L/H301Q) failed to undergo nuclear translocation. These results were consistent with their affinity for each ligand. Notably, VDR(R270L/H301Q) may exist in an unliganded form under physiological conditions, and factors interacting with VDR(R270L/H301Q) may be involved in the hair growth cycle. Thus, this novel system using an adenovirus vector could be valuable in elucidating vitamin D receptor functions.


Assuntos
Receptores de Calcitriol , Raquitismo , Humanos , Ratos , Animais , Receptores de Calcitriol/genética , Vitamina D/farmacologia , Calcifediol , Alopecia/genética , Adenoviridae/genética
12.
Nat Genet ; 55(1): 44-53, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36635386

RESUMO

Metabolic processes can influence disease risk and provide therapeutic targets. By conducting genome-wide association studies of 1,091 blood metabolites and 309 metabolite ratios, we identified associations with 690 metabolites at 248 loci and associations with 143 metabolite ratios at 69 loci. Integrating metabolite-gene and gene expression information identified 94 effector genes for 109 metabolites and 48 metabolite ratios. Using Mendelian randomization (MR), we identified 22 metabolites and 20 metabolite ratios having estimated causal effect on 12 traits and diseases, including orotate for estimated bone mineral density, α-hydroxyisovalerate for body mass index and ergothioneine for inflammatory bowel disease and asthma. We further measured the orotate level in a separate cohort and demonstrated that, consistent with MR, orotate levels were positively associated with incident hip fractures. This study provides a valuable resource describing the genetic architecture of metabolites and delivers insights into their roles in common diseases, thereby offering opportunities for therapeutic targets.


Assuntos
Estudo de Associação Genômica Ampla , Metaboloma , Humanos , Metaboloma/genética , Fenótipo , Densidade Óssea/genética , Genômica , Polimorfismo de Nucleotídeo Único/genética
13.
Plant Physiol ; 192(1): 342-355, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36718554

RESUMO

Magnesium (Mg) homeostasis is critical for maintaining many biological processes, but little information is available to comprehend the molecular mechanisms regulating Mg concentration in rice (Oryza sativa). To make up for the lack of information, we aimed to identify mutants defective in Mg homeostasis through a forward genetic approach. As a result of the screening of 2,825 M2 seedlings mutated by ion-beam irradiation, we found a rice mutant that showed reduced Mg content in leaves and slightly increased Mg content in roots. Radiotracer 28Mg experiments showed that this mutant, named low-magnesium content 1 (LMGC1), has decreased Mg2+ influx in the root and Mg2+ translocation from root to shoot. Consequently, LMGC1 is sensitive to the low Mg condition and prone to develop chlorosis in the young mature leaf. The MutMap method identified a 7.4-kbp deletion in the LMGC1 genome leading to a loss of two genes. Genome editing using CRISPR-Cas9 further revealed that one of the two lost genes, a gene belonging to the RanBP2-type zinc-finger family that we named RanBP2-TYPE ZINC FINGER1 (OsRZF1), was the causal gene of the low Mg phenotype. OsRZF1 is a nuclear protein and may have a fundamental role in maintaining Mg homeostasis in rice plants.


Assuntos
Oryza , Oryza/metabolismo , Magnésio/metabolismo , Raízes de Plantas/metabolismo , Plântula/genética , Mutação/genética , Zinco/metabolismo
14.
Sleep Biol Rhythms ; 21(2): 193-199, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38469280

RESUMO

The present study aimed to elucidate weekdays' sleeping condition and its influence on occurrence of general malaise in children. A total of 761 Japanese children aged 10 to 12 years were surveyed regarding their weekdays' waking time and bedtime and general malaise using a self-administered questionnaire. As the result of hierarchical cluster analysis on the sleep condition, the participants were classified into three clusters. Sleep duration was significantly longer in cluster 1 (9.35 ± 0.52 h) than in clusters 2 (7.83 ± 0.77 h) and 3 (9.02 ± 0.30 h) and significantly longer in cluster 3 than in cluster 2. Waking time was significantly later in cluster 3 (7:01 ± 0:12) than in clusters 1 (6:22 ± 0:31) and 2 (6:24 ± 0:33, p < 0.001). Bedtime was significantly later in cluster 2 (22:34 ± 0:47) than in clusters 3 (21:59 ± 0:19) and 1 (21:01 ± 0:22) and significantly later in cluster 3 than in cluster 1. There were significantly more subjects in cluster 2 than in clusters 1 and 3 who responded "nearly every day" or "occasionally" to the five of seven questionnaires related to general malaise. The current results indicate that in Japanese children aged 10 to 12 years, (1) sleeping condition of weekdays are classified into three clusters with different mean values for each of sleep duration, bedtime, and waking time, and (2) the occurrence of general malaise may be enhanced in individuals whose sleep duration is less than 8 h.

16.
Crit Care ; 26(1): 322, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271419

RESUMO

BACKGROUND: We have previously shown that iatrogenic dehydration is associated with a shift to organic osmolyte production in the general ICU population. The aim of the present investigation was to determine the validity of the physiological response to dehydration known as aestivation and its relevance for long-term disease outcome in COVID-19. METHODS: The study includes 374 COVID-19 patients from the Pronmed cohort admitted to the ICU at Uppsala University Hospital. Dehydration data was available for 165 of these patients and used for the primary analysis. Validation was performed in Biobanque Québécoise de la COVID-19 (BQC19) using 1052 patients with dehydration data. Dehydration was assessed through estimated osmolality (eOSM = 2Na + 2 K + glucose + urea), and correlated to important endpoints including death, invasive mechanical ventilation, acute kidney injury, and long COVID-19 symptom score grouped by physical or mental. RESULTS: Increasing eOSM was correlated with increasing role of organic osmolytes for eOSM, while the proportion of sodium and potassium of eOSM were inversely correlated to eOSM. Acute outcomes were associated with pronounced dehydration, and physical long-COVID was more strongly associated with dehydration than mental long-COVID after adjustment for age, sex, and disease severity. Metabolomic analysis showed enrichment of amino acids among metabolites that showed an aestivating pattern. CONCLUSIONS: Dehydration during acute COVID-19 infection causes an aestivation response that is associated with protein degradation and physical long-COVID. TRIAL REGISTRATION: The study was registered à priori (clinicaltrials.gov: NCT04316884 registered on 2020-03-13 and NCT04474249 registered on 2020-06-29).


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Desidratação/etiologia , Sódio , Ureia , Potássio , Aminoácidos , Glucose , Síndrome Pós-COVID-19 Aguda
17.
Clin Proteomics ; 19(1): 34, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171541

RESUMO

INTRODUCTION: Severe COVID-19 leads to important changes in circulating immune-related proteins. To date it has been difficult to understand their temporal relationship and identify cytokines that are drivers of severe COVID-19 outcomes and underlie differences in outcomes between sexes. Here, we measured 147 immune-related proteins during acute COVID-19 to investigate these questions. METHODS: We measured circulating protein abundances using the SOMAscan nucleic acid aptamer panel in two large independent hospital-based COVID-19 cohorts in Canada and the United States. We fit generalized additive models with cubic splines from the start of symptom onset to identify protein levels over the first 14 days of infection which were different between severe cases and controls, adjusting for age and sex. Severe cases were defined as individuals with COVID-19 requiring invasive or non-invasive mechanical respiratory support. RESULTS: 580 individuals were included in the analysis. Mean subject age was 64.3 (sd 18.1), and 47% were male. Of the 147 proteins, 69 showed a significant difference between cases and controls (p < 3.4 × 10-4). Three clusters were formed by 108 highly correlated proteins that replicated in both cohorts, making it difficult to determine which proteins have a true causal effect on severe COVID-19. Six proteins showed sex differences in levels over time, of which 3 were also associated with severe COVID-19: CCL26, IL1RL2, and IL3RA, providing insights to better understand the marked differences in outcomes by sex. CONCLUSIONS: Severe COVID-19 is associated with large changes in 69 immune-related proteins. Further, five proteins were associated with sex differences in outcomes. These results provide direct insights into immune-related proteins that are strongly influenced by severe COVID-19 infection.

18.
Am J Respir Crit Care Med ; 206(10): 1259-1270, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35816432

RESUMO

Rationale: Common genetic variants have been associated with idiopathic pulmonary fibrosis (IPF). Objectives: To determine functional relevance of the 10 IPF-associated common genetic variants we previously identified. Methods: We performed expression quantitative trait loci (eQTL) and methylation quantitative trait loci (mQTL) mapping, followed by co-localization of eQTL and mQTL with genetic association signals and functional validation by luciferase reporter assays. Illumina multi-ethnic genotyping arrays, mRNA sequencing, and Illumina 850k methylation arrays were performed on lung tissue of participants with IPF (234 RNA and 345 DNA samples) and non-diseased controls (188 RNA and 202 DNA samples). Measurements and Main Results: Focusing on genetic variants within 10 IPF-associated genetic loci, we identified 27 eQTLs in controls and 24 eQTLs in cases (false-discovery-rate-adjusted P < 0.05). Among these signals, we identified associations of lead variants rs35705950 with expression of MUC5B and rs2076295 with expression of DSP in both cases and controls. mQTL analysis identified CpGs in gene bodies of MUC5B (cg17589883) and DSP (cg08964675) associated with the lead variants in these two loci. We also demonstrated strong co-localization of eQTL/mQTL and genetic signal in MUC5B (rs35705950) and DSP (rs2076295). Functional validation of the mQTL in MUC5B using luciferase reporter assays demonstrates that the CpG resides within a putative internal repressor element. Conclusions: We have established a relationship of the common IPF genetic risk variants rs35705950 and rs2076295 with respective changes in MUC5B and DSP expression and methylation. These results provide additional evidence that both MUC5B and DSP are involved in the etiology of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , DNA , Metilação de DNA/genética , Expressão Gênica , Predisposição Genética para Doença/genética , Fibrose Pulmonar Idiopática/genética , Mucina-5B/genética , Locos de Características Quantitativas/genética , RNA
19.
Biosci Biotechnol Biochem ; 86(7): 870-874, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35524690

RESUMO

Magnesium is an important nutrient for plants, but much is still unknown about plant Mg2+ transporters. Combining with the structural prediction of AlphaFold2, we used mutagenesis and 28Mg uptake assay to study the highly conserved "GMN" motif of Arabidopsis thaliana MRS2-1 (AtMRS2-1) transporter. We demonstrated that the glycine and methionine in GMN motif are essential for AtMRS2-1 to transport Mg2+.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Cátions , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/genética , Magnésio/metabolismo , Mutagênese
20.
Plant Cell Environ ; 45(6): 1749-1764, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35348214

RESUMO

Phosphorus (P) is an essential macronutrient for plant growth. In deciduous trees, P is remobilized from senescing leaves and stored in perennial tissues during winter for further growth. Annual internal recycling and accumulation of P are considered an important strategy to support the vigorous growth of trees. However, the pathways of seasonal re-translocation of P and the molecular mechanisms of this transport have not been clarified. Here we show the seasonal P re-translocation route visualized using real-time radioisotope imaging and the macro- and micro-autoradiography. We analysed the seasonal re-translocation P in poplar (Populus alba. L) cultivated under 'a shortened annual cycle system', which mimicked seasonal phenology in a laboratory. From growing to senescing season, sink tissues of 32 P and/or 33 P shifted from young leaves and the apex to the lower stem and roots. The radioisotope P re-translocated from a leaf was stored in phloem and xylem parenchyma cells and redistributed to new shoots after dormancy. Seasonal expression profile of phosphate transporters (PHT1, PHT5 and PHO1 family) was obtained in the same system. Our results reveal the seasonal P re-translocation routes at the organ and tissue levels and provide a foothold for elucidating its molecular mechanisms.


Assuntos
Populus , Floema/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fósforo/metabolismo , Folhas de Planta/metabolismo , Populus/metabolismo , Árvores/metabolismo , Xilema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...